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Abstract 

This paper considers the problem of the design and analysis of experiments for comparing 
several treatments with a control when heterogeneity is to be eliminated in two directions. 
A class of row-column designs which are balanced for treatment vs. control comparisons 
(referred to as the balanced treatment vs. control row-column or BTCRC designs) is proposed. 
These designs are analogs of the so-called BTIB designs proposed by Bechhofer and Tamhane 
(Technometrics 23 (1981) 45-57) for eliminating heterogeneity in one direction. Some methods 
of analysis and construction of these designs are given. A measure of efficiency of BTCRC 
designs in terms of the A-optimality criterion is derived and illustrated by several examples. 

AM S Subject Classification: Primary 62K10; secondary 62J15 

Keywords: Designs for two-way elimination of heterogeneity; Multiple comparisons with 
a control; BTIB designs; BTCRC designs 

1. Introduction 

Considerable work has been done in the last decade on block (one-way elimination 

of heterogeneity) designs for comparing treatments with a control beginning with the 

article by Bechhofer and Tamhane (1981). These authors proposed a class of designs 

called the balanced treatment incomplete block (BTIB) designs, which were earlier 

considered by Pearce (1960). An account of most of the available results is given in 

Hedayat et al. (1988). However, row-column (two-way elimination of heterogeneity) 
designs for this problem have not received as much attention. Notz (1985), Jacroux 
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(1986), T o m a n  and Notz  (1991) and Ture  (1991, 1994) have considered some opt imal-  
ity aspects of  such designs, while Rashad  (1984) and Mandel i  (1991) have considered 
some analysis and construct ion aspects. The p r imary  objective of  the present  paper  is 
to introduce a general class of  balanced r o w - c o l u m n  designs for compar ing  treat- 
ments  with a control  (referred to as the balanced t rea tment  vs. control  r o w - c o l u m n  or 

B T C R C  designs), and discuss some methods  of analysis and construct ion for them. In 
the final section of the paper  we give some methods  to compute  the efficiency of 
B T C R C  designs based on the A-opt imal i ty  criterion. 

2. Preliminaries 

Suppose that  we wish to compa re  v >~ 2 t reatments ,  labelled 1, 2 . . . .  , v, with a con- 
trol, labelled 0, in a r o w - c o l u m n  design with a ~> 2 rows and b ~> 2 columns. Assume 
that  only one t rea tment  is applied in each of the N = ab plots. Let Yok be the 
observa t ion  on the ith t rea tment  applied in the j th  row and kth column 
(0 ~< i ~< v, 1 ~< j ~< a, i ~< k ~< b). We assume the usual fixed-effects additive linear model  

Yijk = # -~- O~i -~- flj -b ~k q- I~ijk, (2.1) 

where p is the grand mean  effect, ~ is the ith t rea tment  effect, flj is the j th  row effect, 
~)k is the kth column effect and the e~jk are uncorrela ted r a n d o m  errors with zero mean  
and constant  variance a 2. The var ious effects are assumed to satisfy the side condi- 

t ions Y~Y=o ai = ~ = 1  flJ = )'~b= 1 ~k = 0.  

It  is of interest to est imate the t rea tment  vs. control  contrasts  Cto - ~i, i = 1, ..., v. In 
order  for these contrasts  to be estimable,  a necessary condit ion is that  v ~< (a - 1) 
(b - 1). Let ~o - ai, i = 1 . . . . .  v, denote  the corresponding least squares est imators.  As 

in the case of  BTIB designs, we define a B T C R C  design as follows. 

Definition. For  the above  set up, a design in which a control  and v >/2  t rea tments  are 
al located in an a x b a r ray  is a B T C R C  design if the least squares es t imators  of  the 
t rea tment  vs. control  contrasts  satisfy 

Var(ao - ~i) = "t2°'2 (1 ~ i ~< v) (2.2) 

and 

corr(ao - ~i,~o - ~i,) = P (1 ~< i # i' ~< v), (2.3) 

where r 2 and p are some constants  which depend on the par t icular  design employed.  

3. Characterization of BTCRC designs 

Consider  a r o w - c o l u m n  design having mlj incidences of the ith t rea tment  in the j th  
row and nik incidences of  the ith t rea tment  in the kth co lumn (0~< i~< v, 
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1 ~<j ~< a, 1 ~< k ~< b). Let M =  {mi~} and N =  {nik} denote the row and column 
incidence matrices, respectively. Further let rl = Y,~= 1 mo = Y,k b = 1 nik be the number of 
replications of the ith treatment, r = (ro, rl . . . . .  roY, and 

[~ii' = mi jmi ,  j a n d  vii' ~-- Z nikni'k. 
j = l  k=l  

Define 

1 
2ii' ~" ~ [ a p i  i, q- bv , ,  - riri, ] . 

We then have the following theorem. 

Theorem 3.1. N e c e s s a r y  and suf f ic ient  condi t ions  f o r  a r o w - c o l u m n  design to be 

B T C R C  (i.e., to sa t i s fy  (2.2) and (2.3)) are tha t  

'~01 : 202 . . . . .  /~Ov = 20 (say), (3.1) 

212 = 213 . . . . .  2~-1,v = 21 (say), (3.2) 

and 2o > 0, 20 + v21 > 0. F o r  a B T C R C  des ign  we  have  

T 2 --  20 -~- 21 
20(20 + v21) (3.3) 

and 

21 
P = 20 + 21" (3.4) 

Proof. The coefficient matrix (C-matrix) for the reduced normal equations of 
a row-column design is given by 

C = diag(r) - M M '  1 N N '  + rr ' .  (3.5) 
- a  ~-b 

Thus the entries of C are 

1 1 
c ,  = ri --  -~ lxii --  -a Vii + r z = ri - 2 .  (O <~ i <~ v) 

and 
1 1 1 

eli' . . . .  -b ["Lii" a vii' + ~-~ riri, = --  2il, (0 <~ i v ~ i' <~ v). 

The C-matrix of the treatment-control  contrasts (denoted by C*) is derived by Notz 
(1985). It is obtained by deleting the first row and the first column of C, and can also be 
written as 

C* = d i a g ( r * ) -  M ' M * '  1 N , N , ,  + r ' r * '  (3.6) 
- a -ab 
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where a superscript  * indicates that  the first row is deleted f rom that  vector  or  matrix.  
The  result now follows along the lines of  Theorem 3.1 of  Bechhofer and T a m h a n e  
(1981); the details are omitted.  [] 

No te  that  the formulas  for r 2 and p are analogous  to those obta ined for a BTIB 

design, but here the design paramete rs  2o and 21 do not  have a simple interpretat ion 
that  they had for BTIB designs. 

4. Analysis of BTCRC designs 

We next consider the analysis aspects of B T C R C  designs. Let 

Ti= ~ ~ Yijk = ith treatment total ( 0 ~ < i 4 v ) ,  
j - 1  k = l  

Aj = ~ Yiik = j t h  row total  (1 ~<j ~< a), 
i = O k = l  

BR = ~ ~ Yiik= kth column total (l ~ k~< b). 
i = O j = l  

Fur ther  let 

,4* = mi jA j ,  B*-= ~ nikB k 
1=1 k = l  

and 

G = T~ = A i = ~ Bk = grand total. 
i=0 j=l k=l 

Define the adjusted treatment total as 

I I 
Qi = Ti - b A* - al- B* ~-~ riG (0~<i~<v) .  

Then the analysis of var iance (ANOVA) for a B T C R C  design is given in Table  1. 

Also, it can be shown that  

21Qo - 2oQi 
~o - ~i - 20(20 + v20" (4.1) 

The  c o m m o n  variance r2a 2 and c o m m o n  correlat ion p a m o n g  these contrasts  can be 
obta ined  f rom (3.3) and (3.4), respectively. Then it is s t ra ightforward to construct  
Dunne t t - type  (1955) s imul taneous  confidence intervals on ~o - ct~(1 ~< i ~< v) using the 
mean  square error  s 2 as an est imate of  tr 2 with (a - 1)(b - 1) - v degrees of  freedom; 
for details, see Bechhofer and T a m h a n e  (1981). 
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Table 1 

Source Sum of squares Degrees of freedom 

Trea tmen t s  (adjusted) [ab/(2o + V,~I) ] [(,~l/2o)Q 2 + ~v= 1 Q/2] i,, 
Rows  (unadjusted)  (1/b)2~_ 1A~ - G2/ab a - 1 

C o l u m n s  (unadjusted)  ( l /a)  Y~_ 1B~ - G2/ab b - 1 
Error  By subt rac t ion  (a - 1)(b - 1) - v 

Tota l  ~ -  0 ~'~-1 "~-1 Y 2k - G2/ab ab - 1 

Note that these designs are not orthogonal, but are variance-balanced. This has two 
advantages: (i) the analysis is simple, and (ii) such designs are expected to be good 
based on the results available for block designs where highly efficient, and even 
optimal designs for a variety of criteria are usually BTIB designs; see Hedayat et al. 
(1988). 

5. Construction of BTCRC designs 

The class of BTCRC designs is very wide since theoretically at least, the parameters 
r i , la i i , ,v , ,  can be unequal as long as the conditions (3.1) and (3.2) are fulfilled. 
However, such general BTCRC designs appear extremely difficult to construct. It is 
easier to construct BTCRC designs that possess some additional symmetry properties, 
e.g., the designs that are equireplicatc in treatments, i.e., rl  = r2 . . . . .  rv. We now 
present several methods of constructing such restricted BTCRC designs. 

M e t h o d  1: Start with a latin square of order w > v and change symbols v + 1 . . . . .  w 
to the symbol 0 (control). This method was first suggested by Notz (1985). The method 
can be extended by starting with a Youden design (YD) or a generalized Youden 
design (GYD) (Kiefer 1975a) and changing some symbols to 0. 

A generalization of this method is due to Jacroux (1986): Start with a BTIB 
design with columns as blocks and rearrange symbols in each column so that every 
treatment i is replicated the same number of times in each row (the common number 
per row may be different for different treatments), i = 0, 1 . . . . .  v. Hedayat and Majum- 
dar (1988) used Jacroux's technique to construct many infinite families of BTCRC 
designs. 

M e t h o d  2: Designs obtained using Method 1 above have all /1,, equal and all 
vii, equal, i.e., these designs arc row as well as column balanced. However, for an 
equireplicate (in treatments) BTCRC design, we only need that the (a#oi + bvoi) be 
equal for 1 <~ i ~< v and the (ala,, + by , , )  be equal for 1 ~< i ~ i' ~< v. If, in addition, 
these two quantities are equal then the resulting design is a pseudo-Youden design 
(PYD) introduced by Cheng (1981). Thus a BTCRC design can be constructed from 
a PYD in w symbols by changing symbols v + 1 . . . . .  w to 0. 
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Example 5.1. Cheng (1981) has given a 6 x 6 PYD for nine treatments; a similar 
design was first reported by Kshirsagar (1957). Replacing symbols 7, 8 and 9 by O's we 

get the following BTCRC design for six test treatments in which Plo + rio = 15 and 

]tii, -~- Vii, ~--- 5 for 1 ~< i V a i' ~< 6: 

4 0 0 6 0  5 

3 1 2 0 0 0  

2 5 1 3 6 4 

0 3 6 2  5 0  

0 6 0 4  1 3 

5 0 4 0 2 1 

This design has 2o = 7 and 21 = ~s. 

M e t h o d  3: The transversal of a latin square of order v is a set of v cells such that 
each row, column and symbol is represented exactly once in this set; see Hedayat  and 

Seiden (1974). By changing all symbols in a transversal to 0 one obtains a BTCRC 

design with a = b = v, rl . . . . .  rv = v - 1 and ro = v. 

Exam01e 5.2. Consider the following latin square of order 4 with a transversal 

parenthesized: 

1 2 (3) 4 
3 4 1 (2) 

(4) 3 2 1 

2 (1) 4 3 

Then replacing the parenthesized treatments by 0 gives the following BTCRC design: 120 ) 
3 4 1  

0 3 2 " 

2 0 4  

This design has 20 1 and 21 11 
M e t h o d  4: Two transversals in a latin square of order v are called parallel if they 

have no cell in common. Suppose that we have identified such parallel transversals. 
Hedayat  and Seiden's (1974) method of sum composition can be applied to obtain 

a (v + 1) x (v + 1) BTCRC design with r0 = 2v + 1, rl . . . . .  rv = v as follows. First 
apply Method 3 to obtain a v x v BTCRC design using the first transversal. Then take 
horizontal and vertical projections (Hedayat  and Seiden, 1974) of the second transver- 
sal, and add a 0 to complete the design. The method will be clear from the following 

example. 
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Example 5.3. Consider the following 4 x 4 latin square with two parallel transversals, 
one parenthesized and the other square-bracketed: 

[13] 2 (3) 4 
[4] 1 (2) 

/(42 ) 3 1 2 1 1  
(I) 4 [3] 

Replace the parenthesized transversal by O's to obtain the following BTCRC design 
using Method 3: 

[1] 2 0 4 
3 [4] 1 0 

0 3 [2] 1 
2 0 4 [3] 

Next project the square-bracketed transversal horizontally and vertically, and use the 
sum composition method to complete the following square BTCRC design: 

02041)2 3 0 1 0 4 

0 3 0  1 . 

2 0 4 0  
1 4 2 3 

This design has 2o = ~34 and 21 = -~. 
In a similar fashion, we can obtain a (v + t - 1) x (v + t - 1) BTCRC design by 

starting from a latin square of order v with t parallel transversals. 
Method 5: The patchwork method of Kiefer (1975b) can be used to construct larger 

BTCRC designs from smaller ones as the following example shows. 

Example  5.4, Suppose that v = 4. Let dx be a 6 x 6 BTCRC design obtained from 
a latin square of order 6 by changing symbols 5 and 6 to 0, 

1 0 3 4 2 0  
d 2 =  0 3 4 2 0 1  , 

4 2 0 0 1 3 
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and d 3 be a 3 × 3 matrix of all O's. Then 

0 1 2 3 4 0 1 0 4 

0 0 1 2 3 4 0 3 2 

4 0 0 1 2 3 3 4 0 

3 4 0 0 1 2 4 2 0 
(d l  d ~ ) =  2 3 4 0 0 1 2 0 1 

d2 d3 1 2 3 4 0 0 0 1 3 

1 0 3 4 2 0 0 0 0 
0 3 4 2 0 1 0 0 0 

4 2 0 0 1 3 0 0 0 

is a 9 x 9 BTCRC design for four test treatments. This design has 2o = ~ and 21 - ½4. 
The BTCRC design d2 belongs to the "Euclidean family" of Hedayat and Majumdar 
(1988). 

Method 6: Another method that suggests itself is to take a union of columns (or 
rows) of two (or more) BTCRC designs to get a larger one. As is well-known, this 
method works for BTIB designs when we take a union of the blocks. However, this 
method does not, in general, work for BTCRC designs. For  example, consider the 
following two BTCRC designs: 

0 1  

dl = 1 0 , d 2 =  2 3 . 

2 3 1 2 

Then it is easily checked that their row-wise or column-wise union does not result in 
a BTCRC design. A condition under which this method does work is derived in 
Lemma 5.1. 

Without loss of generality, consider two BTCRC designs, dl and d2, where d~ is 
a a x b i design with row and column incidence matrices given by M~ and Ni, respec- 
tively, and the vector of replications given by ri (i = 1, 2). Further let M*, N~ and r* be 
the matrices and vectors obtained from Mi, N~ and ri, respectively, by deleting the row 
corresponding to the control (0) in each one. The C- matrix, C*, for treatment-control 
contrasts for each design is given by (3.6), and from Theorem 3.1 it follows that di is 
BTCRC if and only if C* is compound symmetric. 

Suppose that d is a design obtained by taking a row-wise union of dl and d2. Then 
the row and column incidence matrices, and the replication vector of d are: 

M = M1 + ME, N = (N1 IN2), r = !" 1 "4- / ' 2 "  

For i = 1, 2, let 

1 ( _  1 lal,a) ' (5.1) H , = ~ M *  I , - -  a 
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where la is an identity matrix of order  a and la is a a x 1 vector of all l's. It can be 

shown that  the C-matrix of  design d is given by 

bib2 
C* = C* + C* + b~-x--x--x--x--x--x+~ (Ha - H2)(Hx - H2)'. (5.2) 

The following lemma can be proved immediately from this expression or  using 

Theorem 2.1 of Hedaya t  and M a j u m d a r  (1985). 

L e m m a 5 . 1 .  The difference C * - ( C *  + C~) is nonnegative definite. Further, 
C* = C* + C~ if and only if i l l  = H2 where Hi is defined in (5.1). I f  bl = b2 then this 
condition becomes 

1 , ,  
M* M * -  :la. 

In addition, if r* = r* then this condition becomes M* = M*.  

Example 5.5. As an illustration, if d is an a x a B T C R C  design obtained from a latin 

square of order  a then the a x na array obtained by taking a row wise union of  n copies 

of  d is also a B T C R C  design. 

Example 5.6. As a second example, consider three B T C R C  designs: 

0 i) 10!t (i°3/ d l =  1 0 , d2= 2 3 , d 3 =  1 2 . 

2 3 0 1 3 0 

All three designs are equivalent for estimating t rea tment -con t ro l  contrasts  because 

they have the same C* matrix. Let d be a row-wise union of dx with itself, let d' be 

a row-wise union of d~ with d2 and let d" be a row-wise union of dl with d3. Then it is 
easy to check that d and d' are B T C R C  with (20, 2~) 4 2 [4. 11~ = (5, 5) and ~3, 1s J, respectively, 
but d" is not  a B T C R C  design. Using (5.2) we can calculate the C-matrices of 

t reatment  vs. control  contrasts  for these three designs which are as follows: 

1 / 
C ~  = 2 C *  = - 1 5 - , 

1 - 1  5 

- ~- 23 

120 - 24 \ - 24 
= 1  - 2 5  ) C * , ,  - 24 121 . 

- 24 - 25 121 
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The C-matrices of d and d' are compound symmetric while that of d" is not (although 
departure from compound symmetry is only slight). Note that both C*, - C* and 
C~',, - C~' are nonnegative definite, and hence d' and d" are at least as good as d based 
on the usual design optimality criteria. For  example, using the A-optimality criterion, 
we see that tr(C]' - 1) = 1.50, tr(C*, - 1) = 1.38 and tr(C~,- 1) = 1.49. Thus this example 
suggests that when taking a row-wise union of two identical latin squares, it is better 
to permute the rows of the latin square. 

Example 5.7. Consider three BTCRC designs: 300) i0 3)  003) 
dl = 3 0 2 0 , d 2 =  1 0 3 2 , d 3 =  0 1 0 2 . 

2 0 0 1 2 3 0 1 0 0 3 1 

Let d denote the row-wise union of dl and d2, and let d' denote the row-wise union of 
dl and d3. Both d and d' are BTCRC even though they do not satisfy the conditions of 
Lemma 5.1 (since M'~ - (1/a)r*l'~ ~ M *  - ( 1 / a ) r * l ' ,  and M* ~ M~'). It is clear that 
there are many ways of combining BTCRC designs to obtain a new BTCRC design. 

M e t h o d  7: Stewart and Bradley (1991) gave several methods for constructing 
universally optimal a x b row-column designs in v treatments, but with the restriction- 
that some cells in the a x b array (called "empty nodes") are not involved in the 
experiment. They gave three design classes. If one begins with any of Stewart and 
Bradley's designs, and fills up the empty nodes with O's then the result is a BTCRC design. 

Example 5.8. The following BTCRC design with v = 8, a -- 14, b = 8 is obtained 
from Table 6 of Stewart and Bradley (1991) using the above method. 

0 0 0 5 0 3 2 1 1  
3 0 0 0 6 0 4 2  

5 4 0 0 0 7 0 3  

0 6 5 0 0 0 1 4  

2 0  7 6 0 0 0  5 

0 3 0 1 7 0 0 6 

0 0 4 0 2 1 0 7 

8 0 0 2 0  5 3 0 

4 8 0 0 3 0 6 0  
7 5 8 0 0 4 0 0 

0 1 6 8 0 0 5 0 

6 0 2 7 8 0 0 0 

t 
0 7 0 3 1 8 0 0  ~ 

/ 0 0 1 0 4 2 8 0 

This design has 2o 9s = ~ and 21 - ( - ~ 2 .  
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6. Efficiency of BTCRC designs 

Given the dimensions of the array, a x b, and the number of treatments, v, there are 
often several possible BTCRC designs. How to choose among these? One possible 
approach is to choose a design that minimizes the Var(~to- ~i)oc ~2, i.e., use the 
A-optimality criterion. In this section we give a lower bound on 32 which is a function 
of a, b and v only using the technique of the refinement of the model (Magda, 1980; 
Kunert, 1983). We illustrate the use of this bound to compute the efficiency of BTCRC 
designs. It should be noted that the bound applies to all row-column designs, not just 
to BTCRC designs; hence the efficiency is in the class of all row-column designs with 
given a, b and v. 

Let D(v, a, b) denote the set of all row-column designs of size a x b for v treatments 
and a control. Let BD(v, a, b) denote the class of all block designs consisting of 
v treatments and a control in b blocks of size a each. For a design d ~ D(v, a, b), 

consider a block design dl • BD(v, a, b) formed by columns old  as blocks and another 
block design d2 • BD(v, b, a) formed by rows of d as blocks.Let rd, Nd, Md and Cd be 
the quantities associated with design d. Then the C-matrices of dl and d2 are given by 

C1 = diag(rd) -- 1 N~N'd 
d 

and 
1 

C2 = diag(rd) -- ~ MdM'a,  

respectively. It follows from (3.5) that C1 - Cd and (?2 - Cd are nonnegative definite. 
Hence it follows that 

, - 1  $-1 $-1 -l 
tr(Cd ) >~ tr(C1 ) and tr(Cd ) >~ tr(C~ ), (6.1) 

where each C* matrix is obtained from the respective C matrix by deleting the row 
and column corresponding to the control. A lower bound on tr(C~ ) can be obtained 
from a result of Jacroux and Majumdar (1989) (which is a generalization of a result of 
Majumdar and Notz (1983)) as follows: Let L = {1, 2 .. . . .  i n t [ a / 2 ] b }  where in t [ . ]  
denotes the largest integer function. For  l • L, let 

e(l) = int [(ab - l ) /bv] ,  

f ( l )  = v(a - 1) + a - 2re(l),  

g(l)  = vab(a - 1) + vbe(l)(v  - 2a + re( l)) ,  

h(l) = b ( i n t [ l / b ] )  2 + 2 ( i n t [ l / b ] ) ( l  - i n t [ l / b ] b )  + ( l -  i n t [ l / b ] b ) ,  

F( l )  = a v { a l -  h(l)} -1 + av(v - 1)2{g(l) - I f ( l )  + h(l)} -~ . 
Let 

Fmin(V , a, b) = min F(I).  
IEL 
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Then for any design dl e BD(v, a, b), 

tr(C1 )/> Fmin(V , a, b). 

Likewise by exchanging a and b we get for any design dE E BD(v, b, a), 

tr(C~ '-1) >/Fmin(V, b, a). 

Hence from (6.1) it follows that  for any design d ~ D(v, a, b), 

t r (C  *-1)  >1 max{Fmin(V, a, b), Fmi.(v, b, a)}. (6.2) 

If design d e D(v, a, b) is a B T C R C  design then t r ( C * -  1) __- vr2. Therefore 

r 2 >1 (1/v)max{Fmi,(v,  a, b), Fmi,(v, b, a)} - F*(v, a, b). 

Hence we define the efficiency of d by 

F*(v, a, b) 
E d = Z2 

Note  that  this is a conservat ive measure  of  efficiency since the actual  m in imum value 
of t r (C~ 1) a m o n g  all row-co lumn designs d e D(v, a, b) is greater  than or equal to 
vF*(v, a, b). 

Another  bound  on t r (C  *-1) is available f rom Notz  (1985, L e m m a  2.6). We cal- 

culated this bound  for m a n y  examples  including the ones given below, and found it to 

be never sharper  than bound  (6.2). The two bounds  coincide for the cases covered by 
Corol la ry  2.1 of  Notz  (1985) where the opt imal  designs are o r thogona l  with respect to 
both  rows and columns. 

Example  6.1. Let v = 4, a = b = 5 . Then F*(4, 5, 5 ) =  0.375. If dl is the B T C R C  
2 0.392. Thus  the efficiency of dl is Ee, 95.7%. design of Example  5.3 then re, = = 

Let d2 be a 5 x 5 latin square in five t reatments ,  0, 1, 4. Then r 2 0.4 giving an 
• - ' ,  d 2 ~ - -  

efficiency Ea~ = 93,8%. Thus  d2 is less efficient than dl.  

Example  6.2. Let v = 3, a = 3, b = 6. Then F*(3, 3, 6 ) =  0.45. Consider  the two 
B T C R C  designs, d and d', of Example  5.6. We can readily calculate z 2 = 0.5 and 

2 = 0.4605, the corresponding efficiencies being Ed 90% and Ea, = 97.7%. Clearly, T d . ~--- 

d' is more  efficient than  d as noted earlier. This analysis gives us the addi t ional  

informat ion  that  d' is highly efficient in the class of  all r o w - c o l u m n  designs D(3,3,6). 

Example 6.3. Let v = 6, a = b = 6. Then F*(6, 6, 6 ) =  0.346. The B T C R C  design 
d obta ined  f rom a P Y D  in Example  5.1 has z 2 = 0.381, and hence its efficiency is 
E~ = 90.8%. 

Example  6.4. Let v = 8, a = 14, b = 8. Then  F*(8,  14, 8) = 0.134. The B T C R C  design 
d given in Example  5.8 has r~ = 0.158 and hence its efficiency is Ea = 84.8%. 

A bound  that  is generally more  conservat ive but  easier to compute  than  (6.2) can be 
constructed by considering a design without  row and co lumn effects (Kurotschka ,  
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1978)). Alternatively use the fact that diag(rd) -- (1/ab)rdr'd -- Cd is nonnegative defi- 
nite for any design d ~ D(v,  a, b). This gives 

(v + , f i ) 2  
tr(C d ) >1 

ab 

Hence an alternative measure of efficiency of a BTCRC design d is 

(v + ~v/v): _ (w/v + 1)2 

E'~ - abvz~ abz~ 

Note that Ed >~ E'a and hence E'd is a more conservative measure of efficiency. 

Example 6.5. Consider a square (a = b = s > v) BTCRC design d obtained from 
a latin square of order s by changing symbols v + 1 .. . . .  s to 0 (control). For this design 
rl . . . . .  rv = s and ro = s(s - v); also z~ = (s - v + 1) /{s(s  - v)}. Hence 

= + 1) (s - v) 

s(s - v + 1) 

For s = 5 and v = 4 we get the design d2 of Example 6.1 for which E'd2 = 90%. As 
another example, consider a 10 x 10 BTCRC design for v = 8 test treatments obtained 
from a latin square of order 10. For  this design E5 = 97.7%. Since Ed/> E5 this design 
is highly efficient. 

Finally consider a 6 x 6 BTCRC design obtained from a latin square of order 6 by 
changing symbols 5 and 6 to 0. Then E5 = 100% showing that this design is A-optimal 
in the class of all row-column designs D(4,  6, 6). The A-optimality of this design also 
follows from the results of Notz (1985). Additional results and examples of A-optimal 
BTCRC designs are available in Hedayat et al. (1988) and Ting and Notz (1987). 
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